The realization space is
  [0   1   1   0   0   1                    x3           x3                                               x3                                               x3    1]
  [1   1   0   1   0   0   -x1*x2 + x2*x3 - x3        x2*x3   x1*x2*x3 - x1*x2 - x2*x3^2 + x2*x3 + x3^2 - x3   x1*x2*x3 - x1*x2 - x2*x3^2 + x2*x3 + x3^2 - x3   x2]
  [1   1   0   0   1   1                     0   x1*x2 + x3                                             x3^2                                            x1*x3   x3]
in the multivariate polynomial ring in 3 variables over ZZ
within the vanishing set of the ideal
Ideal with 6 generators
avoiding the zero loci of the polynomials
RingElem[x1*x2*x3 - x1*x2 - x1*x3 - x2*x3^2 + 2*x3^2 - x3, x1*x2*x3^2 - 3*x1*x2*x3 + x1*x2 + x1*x3 - x2*x3^3 + 2*x2*x3^2 + x3^3 - 3*x3^2 + x3, x1*x2*x3 - 2*x1*x2 - x2*x3^2 + x2*x3 + x3^2 - x3, x1 - x3, x1*x2*x3 - x1*x2 - x2*x3^2 + x3^2 - x3, x1*x2*x3^2 - 3*x1*x2*x3 + x1*x2 - x2*x3^3 + 2*x2*x3^2 + x3^3 - 2*x3^2 + x3, x3 - 1, x1*x2 - x3^2 + x3, x3, x2 - 1, x2, x1*x2 + x3, x1*x2*x3 - x1*x2 - x2*x3^2 + 2*x3^2 - x3, x1*x2 - x2*x3 + x3, x2 - x3 + 1, x2 - x3, x1*x2*x3 - x1*x2 - x2*x3^2 + x2*x3 + x3^2 - 2*x3, x1^2*x2^2*x3 - x1^2*x2^2 - x1*x2^2*x3^2 + x1*x2^2*x3 - 2*x1*x2*x3 + x1*x3^2 + x2*x3^2 - x3^2, x1*x2 - x1*x3 + x3, x1*x2*x3 - x1*x2 - x3, x1^2*x2 - 2*x1*x2*x3 + 2*x1*x3 + x2*x3^2 - x3^2, x1, x2*x3 - x2 - x3, x1 - 1, x1*x2*x3 - x1*x2 - x1*x3 - x2*x3^2 + x2*x3 + x3^2 - x3, x1^2*x2^2*x3 - x1^2*x2^2 - x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2*x3^2 - 2*x1*x2*x3 - 2*x2*x3^3 + x2*x3^2 + x3^3 - x3^2, x1*x2*x3 - x1*x2 - x2*x3^2 + x2*x3 - x3, x1*x2 - x2*x3 + 2*x3]